Convergence theorems of subgradient extragradient algorithm for solving variational inequalities and a convex feasibility problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A modified subgradient extragradient method for solving monotone variational inequalities

In the setting of Hilbert space, a modified subgradient extragradient method is proposed for solving Lipschitz-continuous and monotone variational inequalities defined on a level set of a convex function. Our iterative process is relaxed and self-adaptive, that is, in each iteration, calculating two metric projections onto some half-spaces containing the domain is involved only and the step siz...

متن کامل

Strong Convergence of the Halpern Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Spaces

In this paper, we combine the subgradient extragradient method with the Halpern method for finding a solution of a variational inequality involving a monotone Lipschitz mapping in Banach spaces. By using the generalized projection operator and the Lyapunov functional introduced by Alber, we prove a strong convergence theorem. We also consider the problem of finding a common element of the set o...

متن کامل

A Subgradient-Like Algorithm for Solving Vector Convex Inequalities

In this paper, we propose a strongly convergent variant of Robinson’s subgradient algorithm for solving a system of vector convex inequalities in Hilbert spaces. The advantage of the proposed method is that it converges strongly, when the problem has solutions, under mild assumptions. The proposed algorithm also has the following desirable property: the sequence converges to the solution of the...

متن کامل

The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space

We present a subgradient extragradient method for solving variational inequalities in Hilbert space. In addition, we propose a modified version of our algorithm that finds a solution of a variational inequality which is also a fixed point of a given nonexpansive mapping. We establish weak convergence theorems for both algorithms.

متن کامل

Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space

We study two projection algorithms for solving the Variational Inequality Problem (VIP) in Hilbert space. One algorithm is a modi…ed subgradient extragradient method in which an additional projection onto the intersection of two half-spaces is employed. Another algorithm is based on the shrinking projection method. We establish strong convergence theorems for both algorithms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fixed Point Theory and Applications

سال: 2018

ISSN: 1687-1812

DOI: 10.1186/s13663-018-0641-4